

    
      
          
            
  
PSAW: Python Pushshift.io API Wrapper (for comment/submission search)





Installation

pip install psaw







Description

A minimalist wrapper for searching public reddit comments/submissions via the pushshift.io API.

Pushshift is an extremely useful resource, but the API is poorly documented. As such, this API wrapper
is currently designed to make it easy to pass pretty much any search parameter the user wants to try.

Although it is not necessarily reflective of the current status of the API, you should
attempt to familiarize yourself with the Pushshift API documentation to better understand
what search arguments are likely to work.


	API Documentation on github [https://github.com/pushshift/api]


	Endpoints and parameter descriptions [https://pushshift.io/api-parameters/]


	/r/pushshift [https://www.reddit.com/r/pushshift/]






Features


	Handles rate limiting and exponential backoff subject to maximum retries and
maximum backoff limits. A minimum rate limit of 1 request per second is used
as a default per consultation with Pushshift’s maintainer,
/u/Stuck_in_the_matrix [https://www.reddit.com/u/Stuck_in_the_matrix].


	Handles paging of results. Returns all historical results for a given query by default.


	Optionally handles incorporation of praw to fetch objects after getting ids from pushshift


	If not using praw, returns results in comment and submission objects whose
API is similar to the corresponding praw objects. Additionally, result objects have
an additional .d_ attribute that offers dict access to the associated data attributes.


	Optionally adds a created attribute which converts a comment/submission’s created_utc
timestamp to the user’s local time. (may raise exceptions for users with certain timezone
settings).


	Simple interface to pass query arguments to the API. The API is sparsely documented,
so it’s often fruitful to just try an argument and see if it works.


	A stop_condition argument to make it simple to stop yielding results given arbitrary user-defined criteria


	Commandline interface (CLI) for simplified usage outside of python environment.






WARNINGS


	Using non-default sort may result in unexpected behavior.


	Default behavior is to continuously hit the pushshift api. If a query is taking
longer than expected to return results, it’s possible that psaw is pulling more data
than you may want or is caught in some kind of loop.


	I strongly recommend prototyping queries by printing to stdout to ensure you’re getting the
desired behavior.






Demo usage (python)

from psaw import PushshiftAPI

api = PushshiftAPI()





Or to use pushshift search to fetch ids and then use praw to fetch objects:

import praw
from psaw import PushshiftAPI

r = praw.Reddit(...)
api = PushshiftAPI(r)






100 most recent submissions

# The `search_comments` and `search_submissions` methods return generator objects
gen = api.search_submissions(limit=100)
results = list(gen)







First 10 submissions to /r/politics in 2017, filtering results to url/author/title/subreddit fields.

The created_utc field will be added automatically (it’s used for paging).

import datetime as dt

start_epoch=int(dt.datetime(2017, 1, 1).timestamp())

list(api.search_submissions(after=start_epoch,
                            subreddit='politics',
                            filter=['url','author', 'title', 'subreddit'],
                            limit=10))







Trying a search argument that doesn’t actually work

According to the pushshift.io API documentation, we should be able to search submissions by url,
but (at the time of this writing) this doesn’t actually work in practice.
The API should still respect the limit argument and possibly other supported arguments,
but no guarantees. If you find that an argument you have passed is not supported by the API,
best thing is to just remove it from the query and modify your api call to only utilize
supported arguments to mitigate risks from of unexpected behavior.

url = 'http://www.politico.com/story/2017/02/mike-flynn-russia-ties-investigation-235272'
url_results = list(api.search_submissions(url=url, limit=500))

len(url_results), any(r.url == url for r in url_results)
# 500, False







All AskReddit comments containing the text “OP”

Use the q parameter to search text. Omitting the limit parameter does a full
historical search. Requests are performed in batches of size specified by the
max_results_per_request parameter (default=500). Omitting the “max_reponse_cache”
test in the demo below will return all results. Otherwise, this demo will perform two
API requests returning 500 comments each. Alternatively, the generator can be queried for additional results.

gen = api.search_comments(q='OP', subreddit='askreddit')

max_response_cache = 1000
cache = []

for c in gen:
    cache.append(c)

    # Omit this test to actually return all results. Wouldn't recommend it though: could take a while, but you do you.
    if len(cache) >= max_response_cache:
        break

# If you really want to: pick up where we left off to get the rest of the results.
if False:
    for c in gen:
        cache.append(c)







Using the aggs argument to summarize search results

When an aggs parameter is provided to a search method, the first result yielded by the generator
will contain the aggs result.

api = PushshiftAPI()
gen = api.search_comments(author='nasa', aggs='subreddit')
next(gen)
#  {'subreddit': [
#    {'doc_count': 300, 'key': 'IAmA'},
#    {'doc_count': 6, 'key': 'space'},
#    {'doc_count': 1, 'key': 'ExposurePorn'},
#    {'doc_count': 1, 'key': 'Mars'},
#    {'doc_count': 1, 'key': 'OldSchoolCool'},
#    {'doc_count': 1, 'key': 'news'},
#    {'doc_count': 1, 'key': 'pics'},
#    {'doc_count': 1, 'key': 'reddit.com'}]}
len(list(gen)) # 312







Using the redditor_subreddit_activity convenience method

If you want to profile a redditors activity as in the aggs example, the
redditor_subreddit_activity provides a simple shorthand for profiling a user by the subreddits
in which they are active, counting comments and submissions separately in a single call,
and returning Counter objects for commenting and posting activity, respectively.

api = PushshiftAPI()
result = api.redditor_subreddit_activity('nasa')
result
#{'comment':
#   Counter({
#      'ExposurePorn': 1,
#      'IAmA': 300,
#      'Mars': 1,
#      'OldSchoolCool': 1,
#      'news': 1,
#      'pics': 1,
#      'reddit.com': 1,
#      'space': 6}),
# 'submission':
#   Counter({
#      'IAmA': 3,
#      'ISS': 1,
#      'Mars': 1,
#      'space': 3,
#      'u_nasa': 86})}







Using the stop_condition argument to get the most recent submission by a bot account

gen = api.search_submissions(stop_condition=lambda x: 'bot' in x.author)

for subm in gen:
    pass

print(subm.author)







Collecting results in a pandas.DataFrame for analysis

import pandas as pd

df = pd.Dataframe([thing.d_ for thing in gen])







Logging

If you would like to peek under the hood (e.g. to see the URL of the GET request to the API), just turn on logging like so:

import logging

handler = logging.StreamHandler()
handler.setLevel(logging.INFO)

logger = logging.getLogger('psaw')
logger.setLevel(logging.INFO)
logger.addHandler(handler)





For more detailed messages, set the logging level to DEBUG instead of INFO.



Special Convenience Attributes

Consider the following simple query:

gen = api.search_submissions(subreddit='pushshift')
thing = next(gen)





Special attributes:


	thing.d_ a dict containing all of the data attributes attached to the thing (which otherwise would be accessed via dot notation). One specific convenience this enables is simplifying pushing results into a pandas dataframe (above).


	api.metadata_ The metadata data provided by pushshift (if any) from the most recent successful request. The most useful metadata attributes, IMHO, are:


	api.metadata_.get('shards') - For checking if any shards are down, which can impact the result cardinality.


	api.metadata_.get('total_results') - The database-side count of how many total items were found in the query and should be returned after paging through all results. Users have encountered rare edge cases that don’t return all expected results, probably due to more than 500 items sharing the same timestamp in a result range. See issue #47 [https://github.com/dmarx/psaw/issues/47/] for progress resolving this behavior.











Demo usage (CLI)

For CLI documentation, run

psaw --help







License

PSAW’s source is provided under the Simplified BSD License [https://github.com/dmarx/psaw/master/LICENSE].


	Copyright (c), 2018, David Marx







Indices and tables


	Index


	Module Index


	Search Page







          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       psaw	
       

     
       	
       	   
       psaw.PushshiftAPI	
       

   



          

      

      

    

  

    
      
          
            

Index



 B
 | D
 | I
 | N
 | P
 | R
 | S
 | U
 


B


  	
      	base_url (psaw.PushshiftAPI.PushshiftAPIMinimal attribute)


  

  	
      	blocked (psaw.PushshiftAPI.RateLimitCache attribute)


  





D


  	
      	delta (psaw.PushshiftAPI.RateLimitCache attribute)


  





I


  	
      	interval (psaw.PushshiftAPI.RateLimitCache attribute)


  





N


  	
      	new() (psaw.PushshiftAPI.RateLimitCache method)


  





P


  	
      	psaw (module)


      	psaw.PushshiftAPI (module)


  

  	
      	PushshiftAPI (class in psaw.PushshiftAPI)


      	PushshiftAPIMinimal (class in psaw.PushshiftAPI)


  





R


  	
      	RateLimitCache (class in psaw.PushshiftAPI)


  

  	
      	redditor_subreddit_activity() (psaw.PushshiftAPI.PushshiftAPI method)


  





S


  	
      	search_comments() (psaw.PushshiftAPI.PushshiftAPI method)


  

  	
      	search_submissions() (psaw.PushshiftAPI.PushshiftAPI method)


      	shards_are_down (psaw.PushshiftAPI.PushshiftAPIMinimal attribute)


  





U


  	
      	update() (psaw.PushshiftAPI.RateLimitCache method)


  

  	
      	utc_offset_secs (psaw.PushshiftAPI.PushshiftAPIMinimal attribute)


  







          

      

      

    

  

    
      
          
            
  
psaw



	psaw package
	Submodules

	psaw.PushshiftAPI module

	psaw.psaw module

	psaw.utilities module

	psaw.writers module

	Module contents












          

      

      

    

  

    
      
          
            
  
psaw package


Submodules



psaw.PushshiftAPI module


	
class psaw.PushshiftAPI.PushshiftAPI(r=None, *args, **kwargs)

	Bases: psaw.PushshiftAPI.PushshiftAPIMinimal


	
redditor_subreddit_activity(author, **kwargs)

	
	Parameters

	author (str) – Redditor to be profiled










	
search_comments(**kwargs)

	




	
search_submissions(**kwargs)

	








	
class psaw.PushshiftAPI.PushshiftAPIMinimal(max_retries=20, max_sleep=3600, backoff=2, rate_limit_per_minute=None, max_results_per_request=1000, detect_local_tz=True, utc_offset_secs=None, domain='api', https_proxy=None, shards_down_behavior='warn')

	Bases: object


	
base_url

	




	
shards_are_down

	




	
utc_offset_secs

	








	
class psaw.PushshiftAPI.RateLimitCache(n, t=60)

	Bases: object


	
blocked

	Test if additional calls need to be blocked






	
delta

	Time since earliest call






	
interval

	




	
new()

	




	
update()

	









psaw.psaw module



psaw.utilities module



psaw.writers module



Module contents

Pushshift.io API Wrapper (for reddit.com public comment/submission search)

https://github.com/dmarx/psaw





          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          PSAW: Python Pushshift.io API Wrapper (for comment/submission search)
        


      


    
  

_static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





